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Recently there has been some suggestions that fragmentation of thin brittle sheets is qualitatively different
from pure two-dimensional fragmentation. The obvious reason for such a discrepancy is the possibility of the
sheet to deform out of plane. There is a generic crack-branching mechanism that creates power-law fragment
size distribution in the small fragment range for two-dimensional �2D� and three-dimensional bulk fragmen-
tation with the power exponent �2D−1� /D. For thin sheets, the power exponent seems to be close to 1.2 which
differs from the D=2 exponent 1.5. In order to make a distinct separation between sheet and 2D fragmentation,
high-resolution fragment size distributions are required for fragmentation models with minimal differencies
other than dimensionality. Here a very efficient numerical model which can be switched from 2D fragmenta-
tion to out-of-plane sheet fragmentation with minimal changes is used to produce high-resolution fragment size
distribution for the two cases. The model results cast some doubt on the existence of separate universality
classes for sheet and 2D fragmentation.
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One of the very early attempts to model fragmentation
processes and to explain fragment size distributions �FSDs�
was conducted in the 1940s by Mott �1–3�. He blasted thick
shells and collected the fragments to form FSDs. Mott also
made attempts to explain the distribution functions by com-
parison with a one-dimensional Poisson process and a two-
dimensional �2D� random construction of horizontal and ver-
tical lines dividing a plane into pieces �4�. The line
construction results in a cumulative FSD, i.e., the relative
number of fragments with size larger than area S, of the form
N�S���SK1��S�, where K1 is a modified Bessel function.
This form of N�S� is fairly close to the more simple FSD of
the one-dimensional �1D� Poisson process N�S��exp�−�S�
�5�.

Later Grady and Kipp �5� extended the line construction
model to include several different set of rules for construct-
ing the line grid. Obviously, the most realistic constructions
are those that do not allow lines to intersect. These typically
result in FSDs close to that of a two-dimensional Poisson
process N�S��exp�−S�, which is different from the 1D Pois-
son process above.

The perhaps most well-known papers on fragmentation
are those of Gilvarry �8� and of Gilvarry and Bergstrom �9�.
Gilvarry derived a theoretical FSD under the assumption that
uncorrelated flaws within the volume, on the surface and
along the edges of existing fragments are activated in an
uncorrelated fashion during fragmentation. The empirical
Rossin-Rammler �10� and Gates-Gaudin-Schuhmann
�11–13� FSDs and the experimental FSD of Gilvarry and
Bergstrom are all consistent with the theoretical result of
Gilvarry if it is assumed that edge flaws are dominant. The
distribution of fragments with size between S and S+dS is
then given by

n�S� � q�S�S−�d−1�/d exp�− S/S0�dS , �1�

where D is the Euclidean dimension, S0 relates to the fre-

quency of the Poisson process and q�S� is the density of “a
priori” fragments of size S. This parameter Gilvarry set to
q�S�=V0 /S, where V0 is the volume of the unbroken object.

Equation �1� seems to excellently explain numerous FSDs
of fragmentation experiments and numerical simulations
�14�. There are, however, some important unresolved issues
of the Gilvarry theory. First, it is unclear when and how the
a priori fragments, q�S�=V0 /S, are formed. Second, Gilvarry
assumed that once flaws are activated they form smooth
cracks. More recently it has been established that rapidly
propagating cracks in brittle materials are not stable, but
crack branching and crack tip splitting appear beyond some
critical crack velocity �16�. Fragmentation cracks are obvi-
ously always fast, which means that such instabilities will
destroy smooth crack surfaces and small fragments will be
formed in “damage zones” along the paths of propagating
cracks. These fragments are not included in the Gilvarry
model and they will have a significant affect on the FSD in
the small fragment range �15�, which makes the validity of
the model doubtful.

Inspired by the crack-branching mechanism it was rather
recently proposed that the distribution of distances between
initiated crack branches may explain the shape of FSDs in
some cases. These distances have been found to have a log-
normal distribution �17,18�, which could then explain the
appearance of log-normal FSDs. An important mechanism
missing in such a model is that cracks, including crack
branches, are attracted by a free surface. For example, the
crack surface left behind by another crack. This means that a
crack that is propagating beside another crack will turn to-
ward it and they will merge. As the crack reaches the free
surface the stress concentration at the crack tip vanish and
the crack “dies.” As increasing number of the crack branches
merge with other branches the decreasing number of remain-
ing daughter cracks will form increasingly larger fragments
as they propagate further away from the mother crack ex-
panding the damage zone around the crack. This will con-
tinue until all daughter cracks have merged with another
crack or stopped as a result of stress relaxation.
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was investigated by Inaoka and Takayasu �20,21�. The nu-
merical FSDs were found to be consistent with the Gilvarry
result �= 3

2 and �= 5
3 in 2D and three-dimensional �3D�, re-

spectively; i.e., �= 2D−1
D .

A theoretical proof that the crack-branching-merging sce-
nario indeed leads to a power-law FSD with �−1= D−1

D , can
be found in Ref. �22�.

The entire process with multiple unstable cracks produc-
ing branches which form damage zones with merging
branches has been simulated numerically using first principle
models in Refs. �23–25�. If the main cracks are initiated in an
uncorrelated fashion they will divide the unfragmented
sample according to a Poisson process, consistent with the
Grady and Kipp model �5�. Then the entire FSD consist of a
power law at small sizes with a cutoff determined by the
width, �, of the damage zones. For large fragments the FSD
will have an exponential shape. The generic FSD for brittle
fragmentation thus has the form

n�S� � �1 − �r�S−� exp�− �2/��DS�

+ �r exp�− S0
−1�S1/D + ��D� , �2�

where �= 2D−1
D , S1/D+� is the reduced linear size of the

Poisson-process fragments and �r determines the relative
normalization of the two parts of the distribution.

Very recently �26,27� there has appeared reports that frag-
mentation of brittle thin sheets in a three dimensional space
differs from two-dimensional fragmentation which produces
FSDs with �=1.5. For thin sheets the FSDs has been fitted
with simple power laws, n�S��S−�, with ��1.2. These re-
sults are also supported by earlier experiments �6,7�. This
suggest that there may exist another universality class for
fragmentation of thin sheets. An intuitive explanation �27� is
that the difference stems from the possibility of out-of-plane
deformations as thin sheets are fragmented. This is obviously
forbidden for 2D fragmentation. However, the exact mecha-
nism for the out-of-plane fragmentation and the derivation of

the value 1.2 has remained unknown. The reported FSDs
also typically have rather large fluctuations which would
make weak deviations from a pure power law impossible to
detect.

Here, a discrete element model �DEM� of fragmentation
is outlined which can, with minimal adjustments, simulate
both 2D and sheets fragmentation. The model is designed to
be numerically efficient in order to produce high-resolution
FSDs which are used to investigate in detail the elusive dif-
ference between 2D and sheet fragmentation.

The DEM model consist of mass points connected by lin-
ear elastic beams �23�. The elastic energy of the beam model
can be written as �1 /2�kx�2, where x� is the displacement vec-
tor containing translational and rotational displacements of
two connected mass points. If x1 and x7 are the displace-
ments of the two connected mass points along the axis of the
beam that connects them, �x2 ,x8� and �x3 ,x9� the displace-
ment pairs in the two perpendicular directions and �x4 ,x10�,
�x5 ,x11�, and �x6 ,x12�, the rotations of the mass points around
the coordinate axis, The K matrix is given as

�
� 0 0 0 0 0 − � 0 0 0 0 0

0 � 0 0 0 � 0 − � 0 0 0 �

0 0 � 0 − � 0 0 0 − � 0 − � 0
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0 0 − � 0 	 0 0 0 � 0 
 0

0 � 0 0 0 	 0 − � 0 0 0 
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0 0 − � 0 
 0 0 0 � 0 	 0
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FIG. 1. A square lattice of mass points connected by breakable
elastic beams. The lattice is anchored to a frame and fragmented by
a vertical velocity pulse. The size of the lattice is 60�60. The times
of the snapshots are indicated.
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where �= EA
Ls

, �= 12EI
Ls

3 , �= 6EI
Ls

2 , �=
GIr

Ls
, 	= 4EI

Ls
, 
= 2EI

Ls
, and E is

Young’s modulus, A is the cross-sectional area of a fiber, and
Ls is the length of a fiber segment. I is the moment of inertia
with respect to a cross-sectional symmetry axis �assumed to
be similar in at least two directions�. Ir is the moment of
inertia with respect to the center point of the cross section. It
is given by Ir=	0

rdA�r�2, where r is the radius of the beam
and dA� is the differential cross-sectional area of an
element. The torsion modulus is given by GIr /L, where
G=E /2�1+�� is the shear modulus with � being the Poisson
ratio.

The equation of motion for a network of beams can be
written as

Mx�̈ + Cx�̇ + Kx� = 0, �3�

where M is the �diagonal� mass matrix, C the �diagonal�
damping matrix, and K the stiffness matrix of the entire net-
work which can be constructed by summing elements of k
for beams connected to the same mass points, after appropri-
ate rotations of coordinates. Equation �3� can be written in
the discrete form


 M

t2 +
C

2t
�x�t + t� = 
2M

t2 − K�x�t�

− 
 M

t2 −
C

2t
�x�t − t� , �4�

where t is time and �t is the time incremental.
The discrete form of the beam model �Eq. �4�� is easily

implemented on a computer and when �time and space-
dependent� boundary conditions and x�t=0� is defined, the
time development x�t� can unambiguously be calculated.

For most fragmentation simulations there is further a need
to determine a fracture criterion. If a Lennard-Jones type of
potential model is used there is no such need since the at-
tractive force between mass points vanish continuously. For
other models the fracture criterion must be defined explicitly.

Choosing a proper fracture criterion is far from trivial.
The “classical” fracture criterion of Tresca, von Mises,
Mohr-Coulomb and the maximum normal �i.e., hydrostatic
pressure� stress criterion can all be unified in a simple ’ellip-
tical’ stress criterion �19�. This criterion states that a material
under tension fails at locations where

�2

�0
2 +

�2

�0
2 � 1, �5�

in which � is the normal stress and � is shear stress. �0 and
�0 are material dependent constant.

Because both shear and normal stresses are easily defined
for beams it is straight forward to implement this fracture
criterion in the beam model. A fracture limit can either be
defined for every beam separately or as a limit on the aver-
age stress over several beams. For a single beam, � is just
the stress along the axis of the beam and shear � is the
off-axis stress. For several beams �e.g., for all beams con-
nected to a single mass point� the average stress tensor can
be divided in a traceless and a diagonal part which then
defines local normal stress and shear, respectively. Here we
use a fracture criterion for every beam separately. The con-
stants in Eq. �5� are chosen such that fracture through normal
stress dominates.

In the simulations, we use a square lattice which for sheet
fragmentation is anchored to a frame. At t=0 a rapid velocity
impulse is given to all mass points in the vertical direction
�Fig. 1�. For 2D fragmentation the impulse is given as an
in-plane expansion pulse.

Fragments are defined as unbroken lattice unit squares at
the end of a simulation. The size of a fragment is defined as
the number of such squares that are held together as an un-
broken piece.

Figure 1 shows snapshots taken from the side of a sheet
during fragmentation. The size of the lattice is 60�60. The
times of the snapshots are indicated. In order to produce
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FIG. 2. Left: Simulated FSDs for 2D �lower
curve� and sheet �upper curve� compared with
power laws �straight lines� with �=1.5 and �
=1.2, respectively. Right: similar data for frag-
ment sizes in the range 1–20, in lattice units.
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FIG. 3. The same data as in Fig. 2 compared
to the FSD given by Eq. �2�. Left: the full Eq. �2�
fitted to the data. Right: The two parts of Eq. �2�
as separate curves.
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high-resolution FSDs 103–104 sheets were fragmented to
create a single distribution.

Figure 2 displays simulated FSDs for 2D and sheet frag-
mentation. The simulation data is compared to power laws,
n�S��S−�, with �=1.5 and �=1.2, respectively. This figure
confirms that the present model is able to reproduce the ear-
lier reported results.

At this point it would be easy, based in Fig. 2, to draw the
conclusion that there is indeed a different universality class
for sheet fragmentation. If, however, Eq. �2� is fitted to the
same distributions, the match is equally good. The scale on
the y axis is the only fetch factor used in Fig. 2. In Fig. 3 the
y scale is set separately for the two components of Eq. �2�
and the cutoff size S0 is fitted.

In order to investigate in more detail the logarithmic
slope, i.e., the exponents � or �, of the distribution functions
in the small fragment range, the slope was calculated sepa-
rately for every pair of fragments of size i and i+1. The
result is displayed in Fig. 4 and the values are given in Table
I.

As can be seen from Fig. 4 and Table I the logarithmic
slopes follows a rather similar trend for both 2D and sheet

fragmentation. For the very smallest fragments �slope be-
tween fragment size 1 and 2 in lattice units� both slopes are
quite close to 1.2. For fragment sizes in the range of 2–7 the
slopes are closer to 1.5 than to 1.2 in both cases. For larger
fragments the slopes approaches again 1.2. This indicates
that neither sheet nor 2D fragmentation display pure power-
law FSDs and that the fitted power-law FSDs with �=1.2 for
sheet fragmentation and �=1.5 for 2D fragmentation are
only approximations. The difference in the fitted exponents
rather reflect differencies in the variations in the logarithmic
slopes of the FSDs.

In summary, there are no conclusive evidence that there
exist separate universality classes for sheet and 2D fragmen-
tation. It is, however, extremely easy to draw such a conclu-
sion based on simulation or experimental results as it is easy
to fit, with a rather high accuracy, power laws to the data
with power exponent close to 1.2 and 1.5, respectively. The
model results presented here suggest that the differencies in
the exponents only reflects different variations in slopes for
the two cases and that neither of them are exact power laws.
This makes the existence of two separate universality classes
doubtful.
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